

## **UNIVERSITY OF NORTH BENGAL**

B.Sc. Honours 2nd Semester Examination, 2021

# **CC3-MATHEMATICS**

## **REAL ANALYSIS**

Full Marks: 60

### ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

### **GROUP-A**

|    | Answer <i>all</i> questions                                                                                                                               | $2 \times 5 = 10$ |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1. | (a) Find the derived set of the set $A = (0, 2) \cup (1, 3) \cap Q$ , where Q is the set of rational numbers.                                             | 2                 |
|    | (b) Find all limit points of the sequence $(\sin n)_{n \in \mathbb{N}}$                                                                                   | 2                 |
|    | (c) Find a bijection from $Z^+$ to $Z^+ \times Z^+$ where $Z^+$ is the set of all positive integers.                                                      | 2                 |
|    | (d) Construct a sequence $(r_n)_{n \in \mathbb{N}}$ of rational numbers that converges to a given real number <i>r</i> .                                  | 2                 |
|    | (e) Examine if for any $A \subset \mathbb{R}$ , $\overline{A} = \{x \in A; \exists a \text{ sequence } (x_n) \text{ in } A \text{ so that } x_n \to x\}.$ | 2                 |

#### **GROUP-B**

**Answer** *all* **questions**  $10 \times 3 = 30$ 

2. (a) Prove that the series  $\frac{1}{x+1} + \frac{x}{x+2} + \frac{x^2}{x+3} + \dots + (x>0)$  converges if x < 1 and 5 diverges if  $x \ge 1$ .

(b) If 
$$\sum_{n=1}^{\infty} a_n^2$$
 is convergent, prove that  $\sum_{n=1}^{\infty} \frac{a_n}{n}$  is also convergent  $(a_n > 0 \quad \forall n \in \mathbb{N})$ . 5

3. (a) Show that 
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} \dots = \ln 2$$
.

(b) Find 
$$\left(1 - \frac{1}{2}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) \dots = ?$$
 5

| 4. | (a) | Show that finite union of compact subsets of $\mathbb{R}$ is compact. What about infinite | 5+2 |
|----|-----|-------------------------------------------------------------------------------------------|-----|
|    |     | union in this regard?                                                                     |     |
|    | (b) | Show that arbitrary intersection of compact subsets of $\mathbb{R}$ is compact.           | 3   |

### **GROUP-C**

#### Answer all questions

 $5 \times 2 = 10$ 5

2

- 5. Check if the family of all finite subsets of the set of natural numbers is countable.
- 6. Check if the family  $\zeta = \left\{ \left( r_n \frac{1}{2^{n+1}}, r_n + \frac{1}{2^{n+1}} \right); n \in \mathbb{N} \right\}$  is an open cover of  $\mathbb{R}$  5 where  $(r_n)_{n \in \mathbb{N}}$  is a linear array of all rational numbers.

#### **GROUP-D**

## Answer all questions $5 \times 2 = 10$

- 7. Let the sequence  $(x_n)$  of real numbers converges to the real number x and 5  $p: \mathbb{N} \to \mathbb{N}$  is a bijection. Check if  $x_{p(n)} \to x$ .
- 8. Let  $f: D \to \mathbb{R}$ ,  $D \subset \mathbb{R}$  be a continuous function and  $(x_n)$  be a sequence in D.

(a) Examine if 
$$(f(x_n)) \rightarrow f(x)$$
 if  $x_n \rightarrow x \in D$ . 3

(b) Examine if  $(f(x_n))$  is a Cauchy sequence if  $(x_n)$  is Cauchy.

\_\_\_\_\_X\_\_\_\_\_