UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 2nd Semester Examination, 2021

CC3-MATHEMATICS

Real Analysis

Full Marks: 60

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

Answer all questions

1. (a) Find the derived set of the set $A=(0,2) \cup(1,3) \cap Q$, where Q is the set of 2 rational numbers.
(b) Find all limit points of the sequence $(\sin n)_{n \in \mathbb{N}}$
(c) Find a bijection from Z^{+}to $Z^{+} \times Z^{+}$where Z^{+}is the set of all positive integers.
(d) Construct a sequence $\left(r_{n}\right)_{n \in \mathbb{N}}$ of rational numbers that converges to a given real number r.
(e) Examine if for any $A \subset \mathbb{R}, \bar{A}=\left\{x \in A ; \exists\right.$ a sequence $\left(x_{n}\right)$ in A so that $\left.x_{n} \rightarrow x\right\}$.

GROUP-B

Answer all questions

2. (a) Prove that the series $\frac{1}{x+1}+\frac{x}{x+2}+\frac{x^{2}}{x+3}+\ldots \ldots . .(x>0)$ converges if $x<1$ and diverges if $x \geq 1$.
(b) If $\sum_{n=1}^{\infty} a_{n}^{2}$ is convergent, prove that $\sum_{n=1}^{\infty} \frac{a_{n}}{n}$ is also convergent ($a_{n}>0 \quad \forall n \in \mathbb{N}$).
3. (a) Show that $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4} \cdots \cdots=\ln 2$.
(b) Find $\left(1-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right) \cdots \cdots=$?
4. (a) Show that finite union of compact subsets of \mathbb{R} is compact. What about infinite union in this regard?
(b) Show that arbitrary intersection of compact subsets of \mathbb{R} is compact.

GROUP-C

Answer all questions

5. Check if the family of all finite subsets of the set of natural numbers is countable.
6. Check if the family $\zeta=\left\{\left(r_{n}-\frac{1}{2^{n+1}}, r_{n}+\frac{1}{2^{n+1}}\right) ; n \in \mathbb{N}\right\}$ is an open cover of \mathbb{R} where $\left(r_{n}\right)_{n \in \mathbb{N}}$ is a linear array of all rational numbers.

GROUP-D

Answer all questions

$5 \times 2=10$
7. Let the sequence $\left(x_{n}\right)$ of real numbers converges to the real number x and $p: \mathbb{N} \rightarrow \mathbb{N}$ is a bijection. Check if $x_{p(n)} \rightarrow x$.
8. Let $f: D \rightarrow \mathbb{R}, D \subset \mathbb{R}$ be a continuous function and $\left(x_{n}\right)$ be a sequence in D.
(a) Examine if $\left(f\left(x_{n}\right)\right) \rightarrow f(x)$ if $x_{n} \rightarrow x \in D$.
(b) Examine if $\left(f\left(x_{n}\right)\right)$ is a Cauchy sequence if $\left(x_{n}\right)$ is Cauchy.

